Workflow Partitioning to Support Decentralised
P2P Based Enactment

Tariq N. Ellahi, Francesco Nerieri and T. Kechadi

School of Computer Science and Informatics
University College Dublin
Dublin - Ireland
{tariq.ellahi, tahar.kechadi}@ucd.ie, nero@google.com

Abstract. Grid workflow management systems has been a focus of re-
search in recent years and as a result a lot of systems have been devel-
oped. Most of the existing systems employ a centralised workflow en-
actment engine to coordinate the execution of workflow activities. This
approach results in a single point of failure and increased execution over-
head due to the existence of a single enactment engine. In this paper,
we present a workflow partitioning mechanism which can enable decen-
tralised enactment of the workflow activities by a number of distributed
workflow engines coordinating in a peer-to-peer fashion. Initial Experi-
mental results show the efficiency of the partitioning procedure.

1 Introduction

Grid computing [1] enables the aggregated utilization of heterogeneous and dis-
tributed resources such as computing elements, data sources, instruments and
application services. With the help of grid systems, the scientific community is
developing and deploying complex applications to manage and process large data
sets, and execute scientific experiments on distributed grid resources. A workflow
application is a collection of computational activities to be executed according
to the user-specified invocation order to accomplish some specific goal. Workflow
application is represented as a directed graph. Activities are modeled as vertices
of the graph and dependencies among activities are represented as edges. Work-
flow management systems define, create and manage the execution of workflow
applications through the use of software, running on one or more workflow en-
gines, which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications.
Workflow management systems have been used by the business community to
manage business processed for a very long time. Recently, workflow support in
the grid systems was adopted and a number of grid workflow management sys-
tems have been developed during the last few years.

The existing grid based workflow management systems employ a centralised
workflow enactment mechanisms. In this scenario, a single workflow execution
engine coordinates the execution of all the activities in the workflow graph. This
architecture not only introduces a single point of failure but it severely restricts

© S. Torres, I. Lépez, H. Calvo. (Eds.) Received 13/02/07
Advances in Computer Science and Engineering Accepted 08/04/07
Research in Computing Science 27, 2007, pp. 291-304 Final version 23/04/07

292 Noor Ellahi T., Nerieri F. and Kechadi T.

the scalability of the system especially in the grid landscape where thousands
of users will be using the system. One solution to overcome this problem is to
distribute the workflow enactment tasks among a number of workflow engines.
A couple of grid based workflow management systems adopt the decentralised
enactment approach. In order to be able to support the decentralised enactment
of workflow applications, workflow graph must be partitioned and each parti-
tion is assigned to a different workflow engine. This approach will improve the
scalability of the system and result in increased efficiency and reduced execution

time.
In this paper we present a workflow partitioning mechanism that will enable the

grid system to execute the workflow application without relying on a centralized
point of command and control. This approach is used in the grid workflow man-
agement system which is part of the Data Grid Environment & Tools (DGET)
[2][3][4] grid middleware. The rest of the paper is structured as follows: Related
work on workflow partitioning is discussed in section 2. Sections 3 and 4 present
general information about workflow terminology and the lifecycle of a workflow
application. Detailed explanation of the workflow partitioning procedure with
examples are given in section 5. Analysis and evaluation of the workflow parti-
tioning procedure is explained in section 6. Section 7 concludes the paper and

presents future research direction.

2 Related Work

There are several workflow management systems that has be developed dur-
ing last few years [5][6][7][8](9][10][11][12]. Almost all of the systems referenced
except[5][6] employ centralised workflow enactment and thus no partitioning pro-
cedures are applied. There are a couple of workflow management systems that
have been developed with the same objectives as our systems i-e decentralised
enactment of the workflow application. Workflow partitioning was applied in the
Pegasus [5] system but the objective and the method used were different than
our partitioning procedure. The objective of the workflow partitioning system in
Pegasus was efficient mapping of the workflow activities onto grid resources. The
Workflow application is partitioned by levels of the graph thus each level was
isolated as a separate partition. This approach didn’t take into account the data
dependencies among the activities which is a crucial factor in order to enable
the system to support decentralized workflow enactment.

The second workflow management system that incorporates workflow parti-
tioning is Askalon [13]. In Askalon partitioning is performed as an optimization
of the workflow execution. Contrary to Pegasus and our system, the partition-
ing procedure is applied after the scheduling of the workflow activities has been
performed. Its partitioning procedure is quite straight forward in Askalon. All
the activities that have been scheduled for execution on the same grid site are
put into one partition. This approach while useful to some extent still might not
result in efficient enactment of the workflow application. Workflow partition-
ing before the scheduling process can take into account the data dependencies

Workflow Partitioning to Support Decentralised P2P Based Enactment 293

among workflow activities. Thus different scheduling strategies can be applied

to different partitions based on the nature of the activities contained in the
partition.

3 Workflow Lifecycle

L Compositiond

v

L Verificationd)

QS

—

[Partitioninggd

Pre-Processingl

v

Schedulingd

C

v
[Executiond
L

J U

¥

Monitoringl j

Fig. 1. Workflow Lifecycle

In this section we describe the typical lifecycle of a workflow application.
Every workflow application passes through a number of phases during its life-
time. There are five such phases in the workflow application lifecycle. Following
subsections explain each of the phase in details.

3.1 Composition

Workflow lifecycle starts with the composition of the workflow application using
the workflow specification language or other high level visual composition tools.
User specifies all the activities at an abstract level without specifying the grid
related details. Beside specifying the activities, user also defines the dependency
relations among the activities. After the workflow specification, the workflow is
parsed and an internal java representation of the workflow graph is generated
by the workflow engine. This java representation is used during the later phases
of the workflow lifecycle. The workflow parsing process can also be taken as a

pre-verification procedure where workflow is checked for errors missing values in
the workflow specification.

294 Noor Ellahi T., Nerieri F. and Kechadi T.

3.2 Pre-Processing

After t,.he composition phase, workflow graph is pre-processed. The pre-processing
phase is compos.ed of two sub-phases: Verification & Partitioning. These sub-
phases are explained in the following paragraphs.

Verification As described in the previous section, workflow specification is parsed
and checked for syntactical anomalies in the composition phase. In the verifica-
tion phase, workflow graph is checked and verified for any structural conflicts like
deadlocks, livelocks and lack of synchronization etc. The verification procedure
is explained in a separate section later in this paper.

Partitioning After the successful verification of the workflow graph, the par-
titioning phase is entered. Since the focus of our work is peer-to-peer based
enactment of the workflow, workflow specification must be decomposed into a
set of distinct activities that can be enacted by a number of cooperating work-
flow engines. This decomposition of done in the partitioning phase. Section *
describes the partitioning procedure at great length.

3.3 Scheduling

Workflow application specified during the composition phase did not include
any grid related information e.g resource which are going to be used to execute
the activities. During the scheduling phase, the activities are mapped onto grid
resources taking into account the QoS parameters specified in the activity defini-
tion. The scheduling is performed at the partition level. Services of middleware
components like Resource Discovery are used to find matching resources that

can be used for activity execution.

3.4 Execution & Monitoring

After successful scheduling of workflow activities, the execution of the workflow
activities commence. Along with the execution of the activities, monitoring of the
execution is also performed. if anything goes wrong with the execution of some
activity, the monitoring component triggers the fault management component

so the execution rescue can be performed.

4 Workflow Partitioning

Workflow partitioning is the process of decomposing the workflow graph into a
number of smaller non-empty, non-overlapping set of activities. Different parti-
tions can be assigned to different workflow engines so that workflow can be ex-
ecuted in a distributed and decentralized fashion. Partitioning procedure takes
into account the minimization of the inter-partition dependencies. This results

in a number of distinct advantages:

Workflow Partitioning to Support Decentralised P2P Based Enactment 295

Distributed and decentralized workflow enactinent in a Peer-to-1?cer fashion.
This also climinates a centralized workflow engine overlooking and coordi-
nating the exeention of overall workflow application.

Reduced Scheduling and job submission overhead

~ Redueed Communication Overhead

Increased fault tolerance and resilience

= Improved execution efficiency

4.1 Notations

The following notations will be used in this document. to explain different aspects
of workflow management.

W: Workflow graph with vertices representing the activities and edges rep-
resenting the data dependencies between the activities
= A: Set of activities in the workflow W (Vertices of the graph)
D: Data Dependencies belween activities in the workAow W (Edges of the
graph)
-P={m... Pn}: Set of partitions of the workflow W
@i —q a;: Data dependency between activity a; and a; where ai,a; € A
pred(a): Direct predecessor(s)/parents of an activity a € A
succ(a): Direct successor(s) /children of an activity a € A
— s: Start activity of the workflow W
— Sp: Start activity of a partition p € P
= level(a): Level of the activity a in the workflow W

ldiff (ai, a;) = level(a;) - level(a;): Level Difference between activities (a;)
and (a;)

4.2 Partition Properties
All the partitions in the workfow exhibit the following properties:

— Non-Empty: Vp; € P,|p;i |>0A [olpi|=|A|
— Non-Overlapping: Vp;,p; € P,piNp; =0 A mPi=0A pi=A
— No Intermediate Data Dependencies:

Vai,a; € A, B a; —q a; where a; €pi €EP Ag; € PiAa; # spi

4.3 Partitioning Algorithm

The general motivation behind the workflow partitioning is to divide the work-
flow activities into a number of disjoint sets of activities. By doing so, each subset
of activities can be assigned to a separate workflow engine for enactment and
therefore eliminating the existence of a centralized workfAow engine overseeing
the execution of overall workfAow application. One critical factor in the parti-
tioning is to make sure that such isolated activities in a partition must have

206 Noor Ellahi T., Nerieri F. and Kechadi T.

minimum possible dependencies and interaction with the rest of the activities in
other partitions. Activities in a workflow applications are organized into different
patterns, therefore, the functionality of the partitioning algorithm is to search for
a number activities arranged in some patterns with least possible synchroniza-
tion points. Before we describe the partitioning algorithm, it will be necessary to
explain the different patterns, our algorithm will be looking for in the workflow
specification. Partitioning algorithm will try to identify the following types of

patterns:

Activity Pipeline: Activities arranged in a sequential spatial order. This pattern
is similar to an execution pipeline where activities are started one after another
without interacting with the rest of the activities in the workflow. Partitioning
algorithm looks for a set of activities which are arranged in a sequential order
with no synchronization points during the execution of the pipeline. However,
pipeline can begin with a synchronization point which mean, the workflow en-
gine will have to wait till the synchronization is achieved and after that, it can
continue executing the rest of the activities in the pipeline without reliance on
other activities in the workflow. Figure 2 shows an example of a pipeline, exam-
ple on the left side show a pipeline without any synchronization point and the
one on the right with a synchronization point at the beginning of the pipeline.

Co(()

OGS
OO
OO
» O

Fig. 2. Activity Pipeline

Parallel Block: The second type of activity pattern the partitioning algorithm
tries to identify is a set of activities which can be executed independently of
each other and from the rest of the activities in the workflow. Such activities
exist when the execution flow reaches a split point and a number of activities are
started that can be run in parallel. Different execution flows started by a split
point will have to converge/synchronize at some stage later during the execution
of the workflow. There can be different execution flow scenarios between a split

Workflow Partitioning to Support Decentralised P2P Based Enactment 297

point and joint point. We identify the following scenarios and our algorithm
treats each scenario in a different fashion.

Immediate Synchronization: This is the case where multiple instances of
the same activity are started to achieve SPMD like scenario. All the instances
synchronize at the next level. Another example could be where a number of
different activities are started at the same time and they synchronize at the
next level. Activities in this scenario can be isolated in a partition and executed
by a separate workflow engine. Figure 3a is an example of this pattern.

Delayed Synchronization: In this scenario, the split point triggers a number of
different execution flows that involves executing multiple activities in a pipeline
or further split points can occur. These different execution flows converge at a
later stage. The partitioning algorithm tries to find different patterns between

the split and the join point and isolate them in different partitions. Figure 3b is
an example of this pattern.

Hybrid: In this scenario, split point can instantiate a number of instances of
the same activities and some execution flows like pipeline. The algorithm isolates
the parallel activities in one partitions and the pipeline can result in a separate
partition. Figure 3c is an example of this pattern.

%) L
ONOROIONONO

O @@ ® \ @
o‘ooeea ©
) (=) ©

Fig. 3. Parallel Acivities

Iteration Block: Most of the workflow models are based on Directed Acyclic
Graph (DAG) model. In such models loops are not allowed. There can be scenar-
ios where some activity needs to be executed iteratively, therefore, our specifica-
tion model allows loops in the workflow specification. Activities in an jteration
block are isolated in a separate partition. Splitting activities in a loop into multi-
ple partitions will result in dependencies among partitions, therefore, a separate
partition is created for each loop definition specified in the workfiow model. It-
eration blocks are identified with the help of language constructs, This is done

298 Noor Ellahi T., Nerieri F. and Kechadi T.

before the partitioning algorithm is applied on the workflow specification. Figure
4 gives and example of iteration blocks both in graphical format and in XML

format.

Fig. 4. Iteration Block

Conditional Execution: Another special case in the workflow specification is
the conditional execution of the activities. In this execution splits into one of
many possible execution flows depending on some conditional expression evalu-
ated during runtime. As with the iteration blocks, conditional execution blocks

Conditional execution blocks are iden-

are isolated into a partition of their own.
tified with the language constructs from the workflow specification model before

applying the partitioning algorithm.
Partitioning algorithm is given below:
PROCEDURE Partition (W)
QUEUE = {s}
while QUEUE # 0 do

BLOCK = {}
Get v, First Node in the queue;

if v instanceOf Partition then
remove v from QUEUE;
append succ(v) to QUEUE;
else if | succ(v) | = 1 && ldiff ((v), succ(v)) =1 && | pred(succ(v)) | =1
then
remove v from QUEUE;
append v to BLOCK;
CALL extractPipeline(succ(v));
else if | succ(v) | > 1 AND | pred(v) | > 1 then
remove v from QUEUE;
append succ(v) to QUEUE;

Workflow Partitioning to Support Decentralised P2P Based Enactment 299

replace v with a Partition
else

CALL extractParallel(v);
end if

end while
END Partition

PROCEDURE extractPipeline(startNode k)
if k instanceOf Partition then
append succ(k) to QUEUE;
else if | suce(k) | = 1 AND | pred(k) | = 1 then
append k to BLOCK;
CALL extractPipeline(succ(k));
else if | succ(k) | > 1 AND | pred(x) | = 1 then
append x to BLOCK;
if succ(x) NOT IN QUEUE then
append succ(k) to QUEUE;
end if
returnAFG(z + y)/2
else if | suce(k) | = 1 AND | pred(k) | > 1 then
if Kk NOT IN QUEUE then

append k to QUEUE;
end if

return
end if

replace nodes in BLOCK as a Partition in W
END ExtractPipeline

PROCEDURE extractParallel(startNode k)
tempBlock = {};

append k to tempBlock;

if succ(k) NOT IN QUEUE then

append succ(k) to QUEUE;
end if

let 6 = pred(k);
while TRUE do
w = next node in the QUEUE;
if pred(w) # 6 then
break;
else if | suce(w) | = 1 && ldiff (w), succ(w)) = 1 && | pred(succ(w)) | = 1
then
remove w from the QUEUE;
CALL extractPipeline(w);
else

remove w from the QUEUE;

300 Noor Ellahi T., Nerieri F. and Kechadi T.

append w to tempBlock;
append succ(w) to the QUEUE;
end if
end while
replace nodes in the tempBlock as Partition in W
return
END extractParallel

4.4 Partitioning Example:

Figure 5 and 6 gives two example workflow and their partitioned versions. Work-
flow graph structure in figure 5 is protein annotation workflow[14] and figure 6 is
a neuro-science workflow[15]. The reason for taking these two as examples is be-
cause these workflow structures represent two different type of workflow graphs.
Workflow in figure 5 is a regular workflow graph with regular data dependencies
but the workflow graph in figure 6 is an irregular workflow with arbitrary data

dependencies.

Fig. 5. e-protein Workflow Example

5 Analysis & Evaluation

This sections focuses on the analysis and evaluation of the workflow partitioning
procedure. Initial experimental results are presented. Tablel shows the exper-
imental setup and the machines used to run the experiments. Figure 7 and 8

Workflow Partitioning to Support Decentralised P2P Based Enactment 30}

Fig. 6. IMRI Workflow Example

Table 1. Experimental Setup

[Nr.[Machine |CPUs|
1 |bonnat.ucd.ie 4
2 |pcrgcluster.ucd.ie| 8
3 [radostina.ucd.ie 2
4 |bwhdzia.ucd.ie 1
5 |tellahi.ucd.ie 1

302 Noor Ellahi T., Nerieri F. and Kechadi T.

shows the impact of partitioning process on the overall execution of the workflow
application. Workflow partitioning doesn’t add much overhead to the execution
time of the workflow execution. As can be seen from figure 7, the partitioning
phase constitutes 6% of the entire execution time of the workflow application
but this cost of execution time spent in partitioning has its influence on the ex-
ecution speed of the workflow application. Figure 8 depicts the execution times
of a workflow application both in partitioned and non-partitioned scenarios. As
can be seen the non-partitioned case takes more time to complete where the
execution time is reduced to almost half when partitioning is performed. The
overhead comes in the time spent to coordinate the execution of workflow activi-
ties by a single centralized entity. All the coordination messages has to be routed
through the centralized enactment engine therefore increasing the execution time

of overall workflow application.

Average Time Spent in Each Phase (%)0

Fig. 7. Execution Time in Lifecycle Phases

Workflow Execution Timed

——1 |. . wio Partiontingd

Fig. 8. Workflow Execution Time

Figures 8 and 9 depicts the partitioning behaviour when applied on different

types of workflow graphs. Figure 8 represents the partitioning behaviou on reg-
ular and irregular workflow graphs. Since there are arbitrary data dependencies

Workflow Partitioning to Support Decentralised P2P Based Enactment 303

in irregular workflow graphs, this results in a larger number of partitions being
created especially some partitions where there is only one activity. This activity
is typically an activity which has random data dependencies and can not be
included in a serial or parallel block. In the sample workflow graphs, the number
of activities were approximately the same but the structure of graphs were com-
pletely different. As a result, a regular graph is partitioned into half the number
of partitions compared to the irregular workflow graph.

Figure 9 shows the partitioning behaviour on workflow graphs with majority
of activities arranged in pipeline or parallel layouts. A workflow graph with ma-
Jority of activities existing in pipeline form results in more number of partitions
because activities in a pipeline can not have data dependencies on activities in
other partitions. Whereas, in the second case, parallel activities do not have any
impact and there are less number of partitions in the second case.

Regular vs Irregular Grpahg

Serial vs Parallel Blocksa

1

i

Partitions)
g Y & 2.0

Reguiad imeguian

Fig. 9. Regular vs Irregular

Fig. 10. Serial vs Parallel
Workflow Partitioning

Block Partitioning

6 Conclusion & uture Work

In this paper we presented a workflow partitioning mechanism which can be used
to split a workflow graph into a number of partitions. Each partition can be ex-
ecuted by a different workflow enactment engine. This approach eliminates a
central entity coordinating the execution of entire workflow application. Experi-
mental results show that partitioning a workflow application results in improved
efficiency and reduced execution time for the workflow application. In the future,
we would like to investigate the partitioning of different types of very large scale
workflow involving thousands of activities. Another important research direction
could be to ascertain whether partitioning is useful in all scenarios.

References

1. L. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann Publishers, USA, 1999.

2. L. McDermott T. Kechadi T. N. Ellahi, B. Hudzia. A java based architecture
of p2p-grid middleware. In The 2006 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2006), 2006.

304 Noor Ellahi T., Nerieri F. and Kechadi T.

3.

10.

11.

12.

13.

14.

15.

. Juergen Hofer

. Jia Yu and Rajkumar Buyya.

. Francine Berman, Andrew Chien,

1:. McDermott T. Kechadi T. N. Ellahi, B. Hudzia. Entity management and secu-
rity in p2p grid framework. In 7th International Conference on Computing (CORE

2006), 2006.

. T.N. Ellahi B. Hudzia, L. McDermott and T. Kechadi. Entity based peer to peer

in data grid environments. In 17th IMACS World Congress, Paris, France, 2005.

. Mei-Hui Su James Blythe Yolanda Gil Carl Kesselman Gaurang Mehta Karan Vahi

G. Bruce Berriman John Good Anastasia Laity Joseph C. Jacob Daniel S. Katz
Ewa Deelman, Gurmeet Singh. Pegasus: a framework for mapping complex scien-
tific workflows onto distributed systems. Scientific Programming Journal, 13-3:219
- 237, 2005.
Farrukh Nadeem Francesco Nerieri Stefan Podlipnig Jun Qin Duan
Rubing Mumtaz Siddiqui Hong-Linh Truong Alex Villazon Marek Wieczorek
Thomas Fahringer, Radu Prodan. Askalon: A development and grid computing
environment for scientific workflows. In Workflows for eScience, XXX (Eds. v
Springer, 2006.
A novel architecture for realizing grid workflow

using tuple spaces,. In 5th IEEE/ACM International Workshop on Grid Computing
(GRID 2004, Nov. 8, 2004, Pittsburgh, USA), IEEE Computer Society Press, 2004.
Keith Cooper, Jack Dongarra, Ian Foster, Dennis

Gannon, Lennart Johnsson, Ken Kennedy, Carl Kesselman, John Mellor-Crummey,
Dan Reed, Linda Torczon, and Rich Wolski. The GrADS Project: Software support
for high-level Grid application development. The International Journal of High

Performance Computing Applications, 15(4):327-344, 2001.
Junwei Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow: workflow manage-

ment for grid computing. In 3rd IEEE/ACM International Symposium on Cluster

Computing and the Grid CCGrid 2003, pages 198-205, 2003.
Chad Berkley Dan Higgin Bertram Ludascher, Ilkay Altintas. Scientific workflow
management and the kepler system. Concurrency and Computation: Practice &

Ezperience, Special Issue on Scientific Workflows, 2005.
Matthew Addis M. Nedim Alpdemir Justin Ferris Kevin Glover Carole Goble

Antoon Goderis Duncan Hull-Darren Marvin Peter Li Phillip Lord Matthew R.
Pocock Martin Senger Robert Stevens Anil Wipat Tom Oinn, Mark Greenwood
and Chris Wroe. Taverna: Lessons in creating a workflow environment for the
life sciences. Concurrency and Computation: Practice and Ezperience, Volume 18
Issues 10:1067 — 1100, 2005.

David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig Robin-
son, Matthew Shields, Jan Taylor, and Ian Wang. Programming Scientific and
Distributed Workflow with Triana Services. Concurrency and Computation: Prac-
tice and Ezperience (Special Issue: Workflow in Grid Systems), 18(10):1021-1037,
2006.

Thomas Fahringer Rubing Duan, Radu Prodan. Run-time optimization for grid
workflow applications. In 7th IEEE/ACM International Conference on Grid Com-
puting (Grid’06), (C) IEEE Computer Society Press, September, 2006.

Darlington J O’Brien A, Newhouse S. Mapping of scientific workflow within the e-
protein project to distributed resources. In UK e-science all-hands meeting, AHM
2004, Nottingham, UK, 2004.

Yong Zhao, Michael Wilde, Ian Foster, Jens Voeckler, Thomas Jordan, Elizabeth
Quigg, and James Dobson. Grid middleware services for virtual data discovery,
composition, and integration. In MGC ’04: Proceedings of the 2nd workshop on
Middleware for grid computing, pages 57-62, New York, NY, USA, 2004. ACM

Press.

